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1. INTRODUCTION 

 

1.1 Project Overview 

The work reported herein was performed by the Georgia Tech Research Institute (GTRI) under 
contract number W911NF-13-1-0414, “Multiple Time Series Node Synchronization Utilizing 
Ambient Reference.” The period of performance of this effort goes from 01 September 2013 to 31 
December 2014. The GTRI principal investigator was Dr. Shean Phelps, while the sponsor 
technical contract was Dr. Micheline Strand of the U.S. Army Research Laboratory’s Army 
Research Office (ARO). The program manager (PM) at the Defense Advanced Research Projects 
Agency (DARPA) was Dr. Jim Gimlett. 

 

This grant was awarded under the broader umbrella of the DARPA’s Biochronicity program, 
originally managed by Dr. Christian Macedonia. The program’s goal was to advance the 
fundamental understanding of the importance of timing and synchronization in complex biological 
systems. The first phase of the Biochronicity program aims to identify the common spatio-
temporal clock signatures in biological systems using empirically derived data. This information 
was then to be used to enable development of predictive algorithms for time-dependent processes. 
The fundamental advancements in the understanding of timing in biological systems could be 
apply to many fields, one of which is enhanced training of military and non-military personnel.  

 

1.2 Project Summary 

Special Operators, like professional athletes, must maintain peak physical performance in and out 
of training, and like professional athletes, they could benefit from having real time biometric data 
used to improve training and performance. In professional sports, the use of wearable sensor 
networks may be soon became commonplace in gathering training data for performance 
evaluation, but the same is not true for Special Operators, because of their specialized and 
exclusive training, and the demanding operational conditions. One major requirement for 
meaningful data analysis and collective signal processing targeted to performance assessment, is 
the need for fine scale synchronization among communicating nodes and across multiple domains. 
The severe requirements that Special Operators have to obey do not allow for common 
synchronization techniques, such as those that rely on a global clock. For this reason, techniques 
that rely on a different synchronization mechanism could potentially be implemented into a 
practical solution to provide real-time feedback data during training or in field operations. 

The research performed under this seed grant approached the problem using a combined hardware 
and software approach. An analog sensor node with generic architecture was prototyped and 
coupled with algorithms designed to synchronize and classify multiple time series sampled at 
possibly unknown and/or variable rates. The sensor node works independently of location, 
acquires multiple data modalities, and can be ruggedized accordingly to the conditions of 
operation. The algorithms are based on the concepts of primitives, for which a complex activity 
can be decomposed in a subset of basic activities. For this work, a dictionary of basic activity was 
derived using a publicly available database. The problem of synchronization across different 
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domains was approach from a time perspective using resampling techniques, and from an event 
perspective using correlation-type measurements. 

During the performing period, the following products were developed  

 

 A functional analog sensor node prototype with the capabilities to acquire acceleration, 
quaternions and electrocardiography signals (ECG). 

 A set of tools for the interface and the streaming/download of the sensor node data 

 A set of algorithm for the analysis of cross-domain biometric data, consisting of the 
following components: 

- Preprocessing and normalization 
- Feature extraction 
- Statistical signal modeling 
- Validation and comparison 

 

Moreover, to facilitate data collection and hardware prototyping the following instrumentation and 
materiel were acquired 

 

 A Shimmer Sensing laboratory-grade wearable data acquisition system  

 A National Instruments high-speed synchronous data acquisition system 

 All parts and components necessary to the realization of the prototype sensor node 

The selection of a high quality laboratory-grade sensor system for the acquisition of multiple 
physiological parameters was important for the characterization of the reference dictionary dataset. 
The research team evaluated several currently available systems and based its decision on several 
factors; some of the most important were the following: 1) Accessibility to data; 2) Flexibility of 
parameters; 3) Number and type of supported sensors; 4) Integration with other developing 
environments (C, C++, Matlab, Java); 5) Quality, compactness, maturity; 6) Cost. 

 

During the duration of the project, the following datasets were acquired and/or analyzed 

 

 Open public PAMPA2 daily activity dataset 

 PhysioNet.org ECG activity dataset for normal conditions 

 Mixed activity dataset acquired in laboratory settings using the Shimmer sensors 

All the programming, analysis, and algorithm development was done in Matlab®, and the sensor 
node firmware was developed using MS Visual Studio Tools. 

Because of time constraints in the development and implementation of the sensor node, no 
controlled data useful for the project was acquired using the hardware prototype. 
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2. MATERIALS AND METHODS 

 

In this section, methods and procedures will be described for the algorithm, hardware prototyping 
and dataset analysis.  

 

2.1 Approach and Introduction 

Human activity modeling and recognition using wearable sensor network is the first step in 
quantifying whole body motion during activity. New sensors have the advantage to be smaller, 
energy efficient and more precise than past generation sensors. Moreover, multiple sensors can 
now be integrated in a single package creating a truly wearable sensor suite that is unobtrusive 
enough to be used during normal everyday activity or physical exercise. The nature of this new 
generation of devices makes them optimal tools for human activity research studies in multiple 
disciplines. For instance, in healthcare wearable sensors applications are found in the study of 
Parkinson’s disease, in the monitoring of medical conditions for post-traumatic events, and in the 
study of human motion for personalized treatments. In sport applications, modern wearable sensor 
systems are used to quantify athletic performance and for training optimization. In the military, 
wearable systems are found in multiple applications, from real-time physiological heath 
monitoring to the assessment of injury in the battlefield.  

The traditional approach in sensor-based activity recognition considers activity as a continuous 
motion and it is based on global features. Here, the data stream is divided into windows, and each 
window is processed separately. The length of the window is chosen to allow for robust feature 
extraction and accurate classification. Although this model works best in controlled setting and 
laboratory tests, real world activities are characterized by high variability and the collected signal 
exhibit a collective non-stationarity. For this type of signals, performance is tightly related to 
window length, making fixed-window techniques suboptimal.   

A different approach to global features is represented by the use of statistical motion primitive 
models, where a dictionary is trained from a set of primitive activities and statistical models are 
obtained for each set. This approach is less sensitive to variations and can captures the local aspects 
of the activity signal.  

In this work, the basic principle of motion primitive was implemented on the statistical modeling 
of feature sets using probability density functions. The primitive models were trained on a 
publically available machine learning dataset containing several representative samples of 
everyday activities. This dataset contained data from sensor positioned at different location on the 
body, for 18 distinct activities (a complete description of the dataset is presented later in the text). 
The data was preprocessed and representative features of motion were extract using time, 
frequency and statistical quantities. Because of the large size of the feature matrix, dimensionality 
reduction using principal component analysis was used. The statistical modeling was done using 
Gaussian mixture models on the vector space spanned by the principal components. A model for 
each activity, location and dataset available was obtained and stored in a dedicated repository. 
After training, the models were cross validated and used for classification. Three use-case 
scenarios were developed, and they are Training, Evaluation and Comparison. In Figure 1 is 
illustrated a general diagram for the processing of raw physiological data, while in Figure 2 is 
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illustrated the comparison of two activities. Explanation of the functionality of each block is 
presented later in the text. 

 
Figure 1.Generic diagram illustrating the acquisition and processing or physiological data. The model derived from 

the processing is stored in a dedicated repository. 

 

 
Figure 2. Generic diagram illustrating the comparison of two activities from two subjects. The result of this 

comparison is a chain of states describing the activity time evolution. 

 

2.2 Datasets used for analysis 

Several datasets were used throughout the duration of the project. Here, a brief summary for each 
one of them is presented. 

 

PAMAP 2 dataset 

The UC Irvine University Physical Activity Monitoring for Aging People II (PAMAP2) dataset 
was used for the analysis and model characterization of basic activities like sitting, standing, 
walking, running etc. The PAMAP 2 dataset was used in several peer-reviewed studies and 
contains a wide array of reference activities acquired for multiple subjects. In particular, the 
PAMAP 2 dataset contains data recorded from 9 subjects (8 males and one female, age 27.22 േ
3.31 years) and a total of 18 activities. Each participant wore three Colibri wireless inertial 
measurement units (IMU) sensors and one heart rate monitor (HR-monitor).  Data was collected 
at three location on the body, at the chest, at the wrist and at the ankle. ECG was measured at the 
chest only using the HR-monitor. Sampling frequency was of 100 Hz for the IMUs and 9 Hz for 
the HR-monitor. The IMU collected acceleration at two different scales, േ16݃ and േ6݃, angular 
velocity (ݏ/݀ܽݎ), magnetometer (ܶߤ) and temperature (°ܥ). The HR-monitor registered heart rate 
in beat-per-minute (bpm). For the data collection, each participant followed a protocol containing 
twelve different activities. A total of 10 hours of data were collected, from which nearly 8 hours 
were labeled accordingly to Table I. 

The activities of Sitting (SIT), Standing (STD), Lying (LNG), Walking (WLK), Running (RUN) and 
Cycling (CYC) were chosen for the analysis. An example of accelerometer data from these 
activities is shown in Figure 3. 
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Table 1– PAMPA2 DATASET ACTIVITIES DESCRIPTION (Highlighted activities were selected for the study) 

ID Activity Description ID Activity Description
1 Lying Lying quietly, small 10 Cycling Biking with real bike
2 Sitting Sitting in a chair 11 Running Jogging outside 
3 Standing Standing still 12 Rope Jumping Basic jumps and alternate 
4 Ironing Ironing 1 or 2 T-Shirts 13 Watching TV Watch TV at home 
5 Vacuuming Vacuum cleaning 14 Computer Work Normal office work
6 Ascending stairs Going upstairs 15 Car Driving Driving normal traffic 
7 Descending stairs Going downstairs 16 Folding Laundry Folding T-Shirts 
8 Normal walking Walking at moderate 17 House Cleaning Dusting 
9 Nordic walking With walking poles 18 Playing Soccer Running, dribbling, passing

 

 

 
Figure 3. Example of vertical acceleration from chest mounted sensor recorded for the activities of Walking, 

Running, Lying, Standing, Sitting and Cycling. 

PhysioNet Datasets 

For the analysis of physiological data from ECG, several PhysioBank1 dataset were investigated. 
The data from this repository is often used for peer-reviewed studies in the biomedical research 
community and it is well documented and characterized. The datasets considered from this project 
(listed below) were used to derive the preprocessing algorithms and the correct type of features. 

 
 AAMI EC13. This dataset contains signal from 10 short recordings (60 sec) specified by 

the current American National Standard for testing various devices that measure heart 

                                                 
1 www.physionet.erg/physiobank 
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rate. Each recording contains a single lead ECG sampled at 720Hz and 12 bit resolution 
over ±10mV. 

 MIT-BIH Arrhythmia. This dataset contains signal from the first generally available set 
of standard test material for the evaluation of arrhythmia detectors. The database contains 
long recording (48 half-hours) from two channel ambulatory ECG from 47 subjects. 
Samples are recorded at 360Hz with 11-bit resolution over ±10mV. 

  BIDMC CHF. This dataset contains long term ECG from subjects with severe congestive 
heart failure (CHF) conditions. Individuals recordings are about 20 hours double lead at 
250Hz at 12-bit resolution over ±10mV. Original signal bandwidth is about 0.1Hz to 40Hz. 

 Fantasia. This dataset contains 120-minute recordings of resting ECG and respiratory 
signals from 48 healthy subjects, digitized at 250Hz. 

An example of ECG data from the MIT-BIH and AAMIec13 dataset is shown in Figure 4. In 
addition to ECG, photoplethysmography (PPG) was also considered at the beginning of the project, 
but was not included in the final data types for this study. The PPG high sensitivity to motion 
artifacts and the difficulties of PPG data acquisition outside of controlled settings made this 
measurement not a good candidate for motion classification and it was the leading factor in the 
decision not to consider it further into the study. 

 

 
Figure 4. Example of ECG signal from dataset MIT-BIH (left) and AAMIec13 (right). 

 

Mixed activity laboratory dataset 

This dataset was acquired using the Shimmer Sensing wearable data acquisition system. Because 
the Shimmer system is modular and allows wireless communication between a base station and 
the sensors, a diversified set of sensors were selected for the laboratory testing. The sensor types 
selected for testing are accelerometer, ECG, and 9DoF IMU. Moreover, this system integrates a 
high quality triaxial accelerometer in every sensor, eliminating the need for adding standalone 
sensors. 
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For this dataset, volunteers from GTRI laboratory were instrumented with a chest, ankle and arm 
Shimmer sensor and instructed to perform a complex exercise routine that consisted in an 
alternated session of walking-running-walking followed by three jumps. This is illustrated in the 
example of Figure 5, where acceleration for the vertical, lateral and horizontal direction is plotted 
against time. Figure 6 instead shows an example of ECG signal acquired with the Shimmer sensors 
at chest location. All data is acquired at the sampling rate of 512 Hz. 

 

 
Figure 5. Example of vertical, lateral and horizontal acceleration recorded from a chest mounted Shimmer unit for a 

sequence of walk-run-walk exercise. 

 

 
Figure 6. Example of ECG signal acquired with the Shimmer sensors at chest location. 

 

2.3 Preprocessing 

Signal preprocessing represent the first step in the analysis of the input data from the sensors and 
it is essential to the conditioning of the raw data for the remaining processing steps. In the 
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preprocessing phase, data artifacts are mitigated or eliminated, and although the applied techniques 
varied depending on the signal type, some operations are common to all signals. In particular, all 
signals received for analysis are processed to remove DC drifts and noise. Some specialized 
processing is required for ECG signals. The following list illustrates the preprocessing 
implemented for each signal type: 

 Acceleration:  detrending and denoising 

 Angular Velocity:  detrending and denoising 

 ECG:   detrending, denoising, and removal of respiration signal 

 

Offset removal and detrending 

When the trend is a constant, the DC offset of the signal can be corrected by subtracting the mean 
of the signal from the signal itself. This is done by selecting a stationary portion of the signal, 
usually starting from the first or the last sample, and computing the mean over a window. This is 
a good estimate of the DC offset, and it is then removed from the signal. 

When signals are characterized by variable offsets, trends are estimated and removed using 
interpolation techniques. In this case, a low order polynomial fit is computed on the signal samples 
to find the best approximation to the data. Keeping the degree of the fitting polynomial low ensures 
that the fit approximates the general trend of the data without removing important information. 

 
Denoising 

Because sensor signals will invariantly contain noise, the process of removing or attenuating this 
noise is important to assure that the best quality possible. Moreover, attenuation of unwanted noise 
in the data is particularly important for the analysis of signals tightly correlated with the 
phenomenon under observation. This is because of salient features in the data that may be masked 
by the noise, and preserving these features guarantees good overall modeling performances.  

Classical denoising techniques based on lowpass filtering rely on the assumption that the signal 
and the noise are separated in the frequency spectrum. In particular, it is commonly assumed that 
the signal is contained in the lower portion of the frequency spectrum while the noise is associated 
with higher frequency components. Although this assumption holds especially well in the case of 
localized noise components, such as frequency peaks associated with resonant frequencies, real 
noise is usually found over the entire Nyquist interval. In particular, any disturbance that can be 
model as a sequence of uncorrelated random variables with given probability distribution function 
follows in this category. For a Gaussian distributed discrete random variable ݊ሺ݇ሻ, we have white 
Gaussian noise, which power spectrum is given by the Fourier transform of its autocovariance 
function ܥ௡ሺ݇ሻ ൌ ሺ݇ሻ, or ௡ܲሺ݂ሻߜ௡ଶߪ ൌ ݂∀ ௡ଶߪ ∈ ሺ∞,∞ሻ. Therefore, if signal and noise are 
intermixed in the frequency range of interest, lowpass filtering the signal is not a good solution for 
the mitigation of the noise. 

An alternative approach is offered by the application of wavelet theory to signal analysis. While 
lowpass filtering is a form of denoising in the frequency domain alone, wavelet denoising operates 
in a different transformed domain. A wavelet is a basis function that is concentrated in both time 
and frequency, which, and unlike the Fourier transform, provides a scale dependent time-frequency 
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representation of a signal. The discrete wavelet transform (DWT) algorithm represents the signal 
using wavelets as basis functions through dilations and translations on a dyadic grid. 

Let us define a discretized signal ݕሺ݇ሻ and suppose that there are ܰ samples of a function ݂ሺݐሻ, 
such that 

௞ݕ ൌ ݂ሺݐ௞ሻ ൅ ,௡߳௞ߪ ݇ ൌ 1,2, …ܰ  (1)

where ߳௞ are iid2 samples for a Gaussian process with zero mean and unit variance, and ߪ௡ 
represent the power of the noise. The DWT, yields the following 

௝௞ݕ ൌ ௝௞ݓ ൅ ௡ߪ ௝߳௞ (2)

where ݓ௝௞ are the wavelet coefficient of ݂ሺݐ௞ሻ.  

The advantage of the DWT representation is that, due to linearity of the wavelet transform, the 
coefficients of the observed signal can themselves be considered a noisy version of the wavelet 
coefficients of the original signal. Also, because of the sparsity properties of the wavelet transform, 
the energy of the original signal is usually concentrated in few coefficients, with the rest of them 
being very small or close to zero. Therefore, for a signal contaminated by Gaussian noise the DWT 
produces a small number of coefficients with high amplitude and a larger number of small 
magnitude coefficients. The approach for which each coefficient is compared with a threshold to 
decide whether it constitutes a desirable part of the original signal or not, is called wavelet 
thresholding. The thresholding extracts the significant coefficients by setting to zero the 
coefficients which their absolute value is below a certain threshold level ߣ. An example of wavelet 
denoising for an impulsive signal is shown in Figure 7.  

 

 
Figure 7 – Example of wavelet denoising. 

 

                                                 
2 iid: independent identically distributed 
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ECG preprocessing 

The ECG signal records the electrical activity of the heart using electrodes placed directly on the 
skin of the participants. The signals recorded by ECG are the voltage variations of the heart cells 
action potentials during contractions. The aim of preprocessing for ECG is to improve the general 
quality of the signals for a more accurate analysis and feature extraction, enhancing the 
characteristics of the QRS complex without corrupting the rest. Noise and other spurious 
components can distort the ECG recordings to such an extent that measurements of the QRS 
complexes becomes unreliable or not possible. The three main types of noise usually affecting 
ECG signals are 

 Low frequency baseline wonder caused by respiration and body movements 

 High frequency random noise cause by electrical interferences and muscular activity 

 Random shifts in ECG signals caused by poor electrode contact   

In literature, a classical approach for the preprocessing of ECG recordings and the detection of 
QRS complexes is the removal of baseline wonder and high frequency noise using an adapting 
filtering approach and classical denoising techniques. In this work, we chose to process the ECG 
using wavelet denoising for the elimination of random noise and Variational Mode Decomposition 
(VMD) for the mitigation of baseline wonder. Moreover, during the investigation, an adaptive 
filtering method based on the Least-Mean Square (LMS) algorithm and using the jointly recorded 
acceleration-ECG signals were implement as an alternative to VMD processing. The drawback of 
this approach is that need for acceleration to be recorded simultaneously to the ECG, in addition 
to the long converging time of the adaptive processor. For this reason, the VMD technique is the 
preferred method, although both techniques are presented here.  

 
Variable Mode Decomposition (VMD) 

Here, a summary of the VMD method as it was applied to the ECG signal used in this work is 
presented. Because of the space required fully present the VMD theory and framework, the reader 
is referred to the bibliography for any additional information. 

The VMD method is based on the concept of Intrinsic Mode Function (IMF) and it represents an 
effort to extend and formalize the well-known Empirical Mode Decomposition (EMD) proposed 
by Huang et al. In the EMD method, the IMF are amplitude and frequency modulated functions 
of the form ݉௞ሺݐሻ ൌ ݂ ሻ൯, with instantaneous frequency defined byݐ൫߶௞ሺݏ݋ሻܿݐ௞ሺܣ	 ௞ሺݐሻ ൌ ߶௞′ሺݐሻ. 
Therefore, for long enough intervals, ݉௞ሺݐሻ can be considered to be a pure harmonic signal. 
Although the original EMD algorithm lacks a formal mathematical description and it is sensitive 
to noise and variations in sampling, it was used in a large number of applications in several 
engineering, medicine, and technology fields.   

The VMD algorithm proposes an intrinsic and adaptive variational method which minimization 
leads to the decomposition of the signal into its principal modes. VMD determines the relevant 
bands adaptively, and estimates the corresponding modes concurrently, properly balancing the 
errors between them. The goal of the VMD method is to decompose an input signal into a discrete 
number of modes that have specific sparsity properties while reproducing the input. Here, it is 
assume each mode ݉௞ be mostly compact around a center frequency	 ௞݂ሺݐሻ, which is to be 
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determined along with the decomposition. The constraint variational problem, as described in the 
original work of Dragomiretskiy and Zosso, can be formulated as following 

min
ሺ௠ೖ,௙ೖሻ

൝෍ቛ߲௧ ቂቀߜሺݐሻ ൅
݆
ൗݐߨ ቁ ∗ ݉௞ሺݐሻቃ ݁ି௜௙ೖ௧ቛ

ଶ

ଶ

௞

ൡ 

such that ∑ ݉௞ሺݐሻ௞ ൌ ݂ሺݐሻ. For the solution of the minimization with respect to ݉௞	and	 ௞݂, the 
reader is referred to the original work cited in the bibliography. 

The application to the VMD algorithm to the ECG signal produces a multi-function representation, 
where different components are representative of the different frequency characteristics of the 
ECG. Therefore, low frequency variations associated to respiration appears in lower modes 
(associated to low center frequencies), while high frequency noise from muscular activity and 
other sources appears in higher modes. It is also possible to reconstruct the original signal ݂ሺݐሻ 
discarding unwanted components, obtaining in this way a simplified version of	݂ሺݐሻ. This is 
illustrated in Figure 8, where the original (red) ECG is shown together with the VMD-filtered ECG 
and Figure 9. 

 

 
Figure 8. Example of ECG signal corrupted by low variational noise associated with respiration and movement. 

Here the original signal (red) is shown along with the VMD-filter one, obtained considering all but the first and last 
components of a six-mode decomposition. 
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Figure 9. VMD modes obtained from the signal from Figure 8. 

 

Least-Mean Square (LMS) filtering 

Adaptive filtering was used to remove low frequency wander from respiration signal and motion 
artifacts associated with body motion. Acceleration from a co-located ECG/accelerometer was 
used in an adaptive filter to estimate motion induced artifacts of the ECG. The LMS algorithm was 
used for the adaptive processor. The MLS method is an iterative approach for the minimization of 
the mean square error (MSE) between the primary and a reference signal. An adaptive filter based 
on the LMS algorithm is schematically illustrated in Figure 10, where the accelerometer signal is 
dynamically subtracted from the ECG signal such that the MSE error is minimized. For the details 
on the implementation of the LMS algorithm, the reader is referred to the bibliography. Despite 
the only indirect correlation of the acceleration with the motion artifact corrupting the ECG, the 
simplicity and relative stability of the LMS algorithm produced good acceptable results, as shown 
in Figure 11. 
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Figure 10. Schematic illustration of adaptive filter. 

 
Figure 11. Example of LMS processing for the removal of low frequency wonder. Top: original ECG signal 

corrupted by respiration noise. Bottom: clear ECG signal after LMS filtering. 

 

2.4 Segmentation 

In case of data comprised of blocks of basic or constant activities, the developed algorithm 
incorporates an option to segment the data and process these segments independently. This option 
is important mostly when generating primitive models without bias. Each segment should be 
representative of a portion of the signal where variance is somehow constant.  

Manual segmentation is based on user input, using custom designed interfaces to guide the user in 
the selection of the relevant segments. While this method allows for precise localization of the 
segment boundaries and it is most useful when dealing with more complex data, its usage is only 
realistic in an ad-hoc analysis or when the number of traces to analyze is small. During manual 
segmentation, the user is prompt to choose if manual segmentation is needed, and then he is 
presented with an interface where flexible breakpoints can be overlapped to the time trace, 
selecting the intervals that will define the data segments. This process is shown in Figure 12. 

For large datasets, an automatic segmentation routine was developed. Two methods for the 
automatic segmentation of data were investigated, one based on continuous Changes in Variance 
(CV), and one based on the Cumulative Sum Method (CSM). The CV method looks for changing 
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in the variance of the signal associated with a change in physical activity. Transition times are 
computed at the point of variation. CSM computes the statistics of the signal for a running window 
and compares the log-likelihood of the distribution of the signal at the right and left of the window 
middle point. Examples of the results obtain using these two techniques are shown in Figure 13 
and Figure 14. 

 

 
Figure 12. Detail of the custom interface for the definition of manual segmentation breakpoints.  

 
Figure 13. Example of CS method results on acceleration measured at the arm for multiple recorded physical 

activities. The transition points in black are manually highlighted for comparison with dashed lines. 
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Figure 14. Example of CSM method results on acceleration measured at the arm for multiple recorded physical 

activities. The transition points in black are manually highlighted for comparison with dashed lines. 

 

2.5 Feature Extraction 

Features of interest were derived from the isolated segments of data and used for classification. A 
dimensionality reduction algorithm based on Principal Component Analysis was developed and 
used on the derived feature sets. Two feature extraction algorithms were developed, one for the 
acceleration and one for the ECG signals, both characterized by time and frequency features. 

  

Acceleration Features 
Acceleration features are computed from recorded acceleration for the x-, y-, and z-axis of the 
sensor reference system. Each feature is computed on a moving window, so that the resulting 
feature is a vector of the same length of the signal in input. The optimal length for the observability 
window was set to three time the sampling frequency, as determine during experimentation. This 
value was found to be optimal for our application, using the data provided by the PAMAP2 dataset. 

The features implemented in the algorithm are the following 

 Movement Intensity (MI) 	

ሾ݇ሿܫܯ ൌ ටܽ௫ሾ݇ሿଶ ൅ ܽ௬ሾ݇ሿଶ ൅ ܽ௭ሾ݇ሿଶ 

 Mean	

஺ோߤ	 ൌ
1
ܰ
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௜

 

 Variance 
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1
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 Skewness 

ெூܭܵ		
ଶ ൌ

1
ܰ∑ ሺܫܯሾ݅ሿ െ ெூሻଷ௜ߤ

ቀඥ	ߪ஺ோଶቁ
ଷ  

 Kurtosis 

ܭ	 ெܶூ
ଶ ൌ

1
ܰ∑ ሺܫܯሾ݅ሿ െ ெூሻସ௜ߤ

ሺߪ஺ோଶሻଶ
 

 Median of ܫܯሾ݅ሿ 
 10th and 90th percentile of ࡵࡹሾ࢏ሿ (࢖૚૙ࡵࡹ	and	ૢ࢖૙ࡵࡹ) 
 Dominant frequency, defined as the maximum of the power spectral density of  ࡵࡹሾ࢏ሿ 
 Spectral Entropy, defined as the entropy of the normalized power spectral density (PSD), 

and compute as 

ܪ ൌ െ෍ܲܵܦ logଶ  ܦܵܲ

 

In addition to these basic features, two additional features were considered: 

 Angle between acceleration vectors defined as 

ݏݑ݈ݑ݀݋݉ ൦
tanെ1 ൬ܽ௜

௝ܽ
൰ െ

ߨ
4

ߨ2
൪ െ  ߨ

where ሺ݅, ݆ሻ ൌ ሼݔ, ,ݕ ݅ ሽ andݖ ് ݆ 
 Derivative of the angle as computed above 

 

ECG Features 
For heart activity, one of the most effective parameter in predicting heart behavior is the heart rate 
variability (HRV), defined as the variation of beat-to-beat intervals in heart rate. This quantity was 
computed as the time difference between the peaks of QRS complexes (also called RR intervals), 
and provides an indirect measurement of the physiological behavior of the heart. Several indicators 
were derived from this measure, where the most important are detailed in Figure 15. Moreover, 
instantaneous heart rate (HR) is directly derived from the HRV signal. In literature, HRV was used 
to quantify improvement in training and fitness performance in different conditions and sport 
activity, and it therefore represent a valuable source of information. Figure 16 to Figure 18 show 
an example from a 47-minute long ECG recording using the Shimmer system, the derived HRV, 
HR and power spectrum. 
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Figure 15 – Definition for HRV time and frequency measurements. 

 

 

 
Figure 16 – (Top) ECG signal from a 47-minute long recording using the shimmer system. (Bottom) Derived HRV measure. 
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Figure 17 – Instantaneous HR computed from the HRV signal of Figure 16. 

 
Figure 18 – Power Spectral Density from the HRV signal of Figure 16. 

 

TABLE 2 – HRV STATISTICS COMPUTED ON THE SIGNAL FROM FIGURE 16. 

Time domain measures Frequency domain measures 

  

Mean HR 95.4 bpm VLF peak 9.7 10-5 Hz 

Std HR 12.0 bpm VLF abs pwr 0.0029 s2 

AVNN 0.639 ms VLF rel pwr 65% 

SDNN 0.0784 ms LF peak 0.04 Hz 

RMSSD 0.038 ms LF abs pwr 0.0011 s2 

 LF rel pwr 25% 

HF peak 0.15 Hz 

HF abs pwr 4.610-4 s2 

HF rel pwr 10% 

LF/HF 2.38 
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2.6 Statistical Modeling 

Acceleration and ECG features distributions are modelled after dimensionality reduction, keeping 
feature sets separated for identification. Dimensionality reduction is done using Principal 
Component Analysis (PCA), while the modeling of the feature densities is done using Gaussian 
mixture models.  

Dimensionality Reduction using PCA 
Principal Component Analysis (PCA) is used to concentrate the information provided by the 
feature vector in few components of high variance. The basic idea in the application of PCA to a 
is to find the component vectors ݕଵ, ,ଶݕ . . . ,  ே that explain the maximum amount of varianceݕ
possible by ܰ linearly transformed components. An intuitive way to define PCA is to use a 
recursive formulation. If we define the first principal component as ݒଵ, its direction is found by 
the solution of the maximization problem ݒଵ ൌ arg݉ܽݔ‖௏‖ୀଵ ଵݒሾሺܧ

 ଵ is the firstݒ ሻଶሿ, where܆்
principal component and X is the vector containing the data. Therefore, ݒଵ is the projection of X 
in the direction that maximizes the variance. Each remaining ܰ െ 1 components are computed by 
repeating this process in the remaining orthogonal subspace. The principal components are then 
given by 

௜ݕ ൌ ௜ݒ
݅∀				܆் ൌ 1, …ܰ 

This operation transforms the column of X into ݕ௜ using the quantities ݒ௜
். These quantities can 

also be computed using the simple covariance matrix ࡯ ൌ  ௜ are the eigenvectorsݒ where the ,܆்܆
of ࡯, which correspond to an equal number of eigenvalues. The transformation that from X obtains 
yi using the eigenvectors of the covariance matrix is also known as Karhunen-Loève transform. 

In the analysis, the dimensionality of the data is reduced from ܰ to ݌, where ݌ ൏ ܰ	to remove 
unwanted components. This comes from the assumption that the data in the last ܰ െ  components ݌
is mostly noise, therefore keeping the first ݌ components we ensure that all signal information is 
represented. For our application, ݌ is selected such as to keep at least 80% of the original signal 
energy. Although the number of components for which this condition is met varies with the type 
of activity and the measurement location, it was found that on average the first three principal 
components account for at least 80% of the energy. As an example, Figure 19 shows the cumulative 
variance for the activities of walking and running measured at the chest and ankle. 

 

 
Figure 19 - Cumulative variance as function of principal component, type of activity and measurement location. 



26 

 

Gaussian Mixture Models 
Each set of principal components is then modeled using Gaussian mixture modeling, a parametric 
density estimation technique. The concept of mixture modeling is based on the assumption that 
any continuous distribution can be approximated arbitrarily well by a finite mixture of normal 
densities with common variance. For a family of Gaussian distributions, and a given finite data set 
ࢄ ൌ ሾݔଵ, ,ଶݔ  ேሿ of N observations, the approximated mixture density has the following formݔ	…

୏݂ሺݔ; ሻߠ ൌ ෍ݓ௞	݃ሺݔ; ௞ሻߠ
୏

௞ୀଵ

 

with ࣂ ൌ ሾݓଵ ଶߠ	ଵߠ	;୏ݓ… ௞ߠ ୏ሿ் andߠ… ൌ ሼߤ௞,  ௞ is the mixing probability ofݓ ௞ሽ. The quantityߪ
the kth component of the mixture. The model parameters ݓ௞,  ௞ need to be estimated forߪ	and	௞ߤ
each one of the K components in the mixture, and the one-dimensional Gaussian kernel is defined 
as 

݃௞ ൌ ݃ሺݔ; ௞ሻߠ ൌ 	
1

௞ߪߨ2√
݁
ି
ሺ௫ିఓೖሻమ

ଶఙೖమ  

A classical solution to this problem is the use of the Expectation-Maximization (EM) algorithm, 
that for a finite dataset and an initial mixture ݂ሺ଴ሻ, provides a sequence of mixture models ݂ሺ௞ሻ 
with  increasing log-likelihood on the data. For details on the EM algorithm, see bibliography 
reference. 

The estimation of the number of components remains a problem. When a large model order is 
selected, the resulting model is modeling the part of the signal associated with noise, while on the 
other hand if a small model order is selected, not enough parameters are provided to the model to 
properly represent all signal features. In this case, the model order K was estimated as an average 
between repetitions for minimum values of the corrected Akaike information criterion (AICc) and 
the Bayes Information Criterion (BIC). Here, the AICc is defined as  

ܿܥܫܣ ൌ െ2ࣦሺ࢞௡, ௞݂ሻ ൅
2ܰሺ3݇ െ 1ሻ

ܰ െ ሺ3݇ െ 1ሻ െ 1
 

while the BIC is defined as 

ܥܫܤ ൌ െ2ࣦሺ࢞௡, ௞݂ሻ ൅ ሺ3݇ െ 1ሻ logܰ 

with ࣦሺ࢞௡, ௞݂ሻ ൌ ࣦ௞ ൌ ∑ log ௞݂
ெ
௠ୀଵ  as the log likelihood of the estimated mixture, and ௞݂ the kth 

mixture component. An example of computed mixtures for ܭ ൌ 3 and two principal components 
is shown in Figure 20 for the activity of walking and running.  
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Figure 20 – Gaussian mixture models of walking and running activities estimated with two principal components. 

 

2.7 Classification 

The information provided by the statistical model was used to cluster data according to its 
characteristic, the sensor location and activity type. Several classification technique have been 
investigated for this work, among which Naïve Bayes classifiers, and divergence metrics 
(Hellinger distance).  

 

Naïve Bayes Classification 
Naïve Bayes classification is an example of supervised learning with the assumption that the 
features are independent for a given class. Bayesian classification is based on the Bayes rule for 
conditional probability, and it assigns the most likely class to a give example. For two events A 
and B, the Bayes rule is defined as 

ሻܤ|ܣሺݎܲ ൌ
ሻܣሺݎሻܲܣ|ܤሺݎܲ

ሻܤሺݎܲ
 

A random variable ܥ is used to denote the class of an example, such that ܥ ൌ ݅, where ݅ ߳ሼ1,2,  ሽܯ…
and ܯ is the number of models or elements present in the dictionary. Then, for a given discriminant 
function ݃௜, the classifier can be generally described as 
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݄ሺ࢞ሻ ൌ arg max
௜ఢሼଵ,ଶ,…ெሽ

݃௜ሺ࢞ሻ ≡ ൛݅|∀݆ ് ݅:	݃௝ሺ࢞ሻ ൏ ݃௜ሺ࢞ሻൟ 

For a Bayes classifier, the discriminant function is the class a-posteriori probability, defined as 

݃௜஻ሺ࢞ሻ ൌ ܥሺݎܲ ൌ ݅|࢞ሻ ൌ
ܥ|ሺ࢞ݎܲ ൌ ݅ሻܲݎሺܥ ൌ ݅ሻ

ሺ࢞ሻݎܲ
 

When assuming equally probable classes, ܲݎሺܥ ൌ ݇ሻ ൌ  ሻ constant, the conditionalݔሺݎܲ and ܯ/1
probability ܲݎሺܥ|ݔ ൌ ݇ሻ remains the only term of interest. By assuming that the features are 
independent within a class, the conditional probability can be expressed as a product of the single 
conditional probabilities 

݃௞ே஻ሺ࢞ሻ ൌ ܥ|ሺ࢞ݎܲ ൌ ݅ሻܲݎሺܥ ൌ ݅ሻ ൎෑܲݎ൫ݔ௝|ܥ ൌ ݅൯ܲݎሺܥ ൌ ݅ሻ
௝

 

The above expression implies that it is possible to estimate the density of each feature separately 
and then take the product of the single probabilities. In our case, the quantity ܲݎሺݔ௝	|ܥ ൌ ݅ሻ is the 
Gaussian mixture associated with a feature set, and using the previously defined notation 

݄ே஻ሺ࢞ሻ ൌ arg	max
௜ఢሼଵ,ଶ,…ெሽ

ቐ
1
ܯ
ෑ෍ݓ௞	݃ሺ࢞; ௞ሻߠ

ࡷ

ଵ௝

ቑ 

 

Hellinger Distance 
The Hellinger distance is divergence measure between probability distributions. Assumed that P(x) 
and Q(x) are two probability distributions belonging to the same probability space, the Hellinger 
distance between them is defined as 

,ሺܲܪ ܳሻ ൌ
1
2
න݀ݔ ቀඥܲሺݔሻ െ ඥܳሺݔሻቁ

ଶ
 

In this work, the Hellinger distance was used to measure model divergence for the highlighted 
activities of Table 1. Figure 21 illustrates the process of estimation of the Hellinger distance for 
one-dimensional and two-dimensional Gaussian mixtures.  

 

 
Figure 21 – Example of estimated Hellinger distance for chest sensors CYCLING-WALKING (left), and 

RUNNING-SITTING (right). 
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3. HARDWARE PROTOTYPYING 

A generic analog sensor node capable of acquiring acceleration and ECG (primary inputs of 
interest) was developed as part of this effort. The sensor is also equipped with an IMU sensor able 
to provide orientation. The component of the sensor node are highlighted in Figure 22, and are the 
Data Acquisition, Processing and Transmission units. The Data Display and Analysis functions 
are not included in the sensor itself are part of an external system. A function block diagram 
highlighting the components and the communication protocols used for each functionality are 
shown in Figure 23. These are 

 InvenSense MPU-9150 – 9-axis Motion Tracking Inertial Measurement Unit with 3-axis 
MEM gyro, 3-axis MEM accelerometer, and 3-axis MEM magnetometer. This unit has a 
16-bit DAC for every sensing unit. 

 TI MSP430 – 16-bit ultra-low power microcontroller, 18MHz clock. 

 TI ADS1293 – Low power, 3 channel, 24-bit analog front-end biopotential measurement 
unit with 25.6 ksps maximum bandwidth 

 TI CC2538 – 2.4GHz IEEE 862.15.4-2006 System-on-a-chip wireless microcontroller  

The firmware for the system prototype was developed using the Contiki3 open source OS, and 
embedded Real Time OS that provides low overhead, a quality network stack and it is optimized 
for very low power consumption. 

 
Figure 22 – Generic block diagram of sensor node highlighting major system components. 

 

                                                 
3 http://www.contiki-os.org/ 
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Figure 23 – Functional block diagram. 

 
Figure 24 - Prototype enclosure for the ECG/IMU node. 

An example of the CAD design for the ECG/IMU node is shown in Figure 24. Based on this CAD, 
a 3D printed enclosure was manufactured and used to contain the electronics. Figure 25 shows the 
CAD drawing of the circular ECG/IMU node along with a booster battery pack mounted at 
approximately center mass on a shoulder harness. Figure 26 shows a picture of the sensor node 
board, with standard ECG lead connected in black, red and white, while Figure 27 shows an example 
of GTRI researcher wearing the sensor node prototype using a shoulder harness. This solution was 
chosen as a demonstration only, and it is not intended to limit its usage.  
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Figure 25 - 3D CAD drawing of the 3D printed enclosure and a booster battery pack mounted at approximately at 

the center mass on a shoulder harness. 

 

 

 
Figure 26 – Picture detailing the sensor node main board. In red, white and black are visible the standard ECG lead 

connectors. 
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Figure 27 – Picture of researcher wearing the sensor node prototype and using a commercially available harness 

system. 
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4. RESULTS AND DISCUSSION 

 

4.1 Validation on PAMAP2 Dataset 

Data from the PAMAP2 database was used to build the dictionary of basic activity of Sitting (SIT), 
Standing (STD), Lying (LNG), Walking (WLK), Running (RUN) and Cycling (CYC), using the 
algorithm described above. Self-validation was performed on the collection of model using a 
randomly chosen datasets for each activity type and for each sensor location. A description of the 
class labels used in the self-validation is shown in Table 3. Classification was done using the 
Hellinger distance defined between Gaussian Mixture models, and the most likely label was 
chosen as the one that maximizes the Hellinger distance over the entire label set. Summary of the 
average results are shown in Figure 28 through Figure 33. An average classification rate is of 72% 
was obtained for the cross validation.  

A brief analysis on the results is presented in the following: 

 CYCLYNG (CYC). Results are shown in Figure 28, where activity at the wrist and ankle 
are correctly classified. 

 LYING (LYN). Results are shown in Figure 29, where no correct classification is 
obtained. 

 RUNNING (RUN). Results are shown in Figure 30, where correct labels are assigned for 
each location. 

 SITTING (SIT). Results are shown in Figure 31, where correct labels are assigned for the 
chest and wrist locations, while the ankle location is misclassified as STD-chest. 

 STANDING (STD). Results are shown in Figure 32, where correct labels are assigned for 
each location. 

 WALKING (WLK). Results are shown in Figure 33Figure 32, where correct labels are 
assigned for each location. 

 

TABLE 3– CLASS LABELS USED FOR THE SELF-VALIDATION. 

1 CYC ankle 10 SIT ankle 

2 CYC chest 11 SIT chest 

3 CYC wrist 12 SIT wrist 

4 LNG ankle 13 STD ankle 

5 LNG chest 14 STD chest 

6 LNG wrist 15 STD wrist 

7 RUN ankle 16 WLK ankle 

8 RUN chest 17 WLK chest 

9 RUN wrist 18 WLK wrist 
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Figure 28 – Self-validation for the activity: CYCLING. Correct labels are selected for the activity recorded at the 

wrist and ankle, while the chest data was not correctly classified. 

 

 
Figure 29 – Self-validation for the activity: LYING. No correct classification is obtained in this case. 

 
Figure 30 – Self-validation for the activity: RUNNING. Correct labels are assigned for each location. 

 
Figure 31 – Self-validation for the activity: SITTING. Correct labels are assigned for the chest and wrist locations, 

while the ankle location is misclassified as STD-chest. 
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Figure 32 – Self-validation for the activity: STANDING. Correct labels are assigned for each location. 

 
Figure 33 – Self-validation for the activity: WALKING. Correct labels are assigned for each location. 

 

4.2 Observations on laboratory acquired data 

Gaussian modeling and classification was also applied to data acquired in the laboratory for 
controlled conditions. For this purpose, the Shimmer wearable sensor system was employed, and 
data from three locations on the body were collected to match the same locations of the PAMAP2 
data. Here, data was acquired at a high sampling rate of 512Hz. The researchers wearing the system 
were then instructed to complete a routine that comprised of a preparation and warming up session, 
walking at a moderate pace, running at a medium pace followed by a cooling down phase. The 
exercise is always completed by three jumps, representing a common denominator for the data. 
This was done because datasets were not synchronize among each other and there was the need to 
mark clearly the end of the exercise routine. Acceleration and rotational velocity was acquired at 
each node, and each node acquired data independently of each other; ECG was acquired by the 
chest sensor. An example of acceleration trace recorded at the chest can be seen in Figure 34, while 
an extract of low and high intensity activity is shown in Figure 35. 

Classification results are shown in Figure 36 and Figure 37. These plots show the strength and 
limitation of the two approaches. The Naïve Bayes classifier appears to work better for low 
intensity activities, which can be compared to a fast pace walk or slow run. In Figure 36 (left), the 
highest score is associated with class 16, which corresponds to walking. The score associated with 
the sensor at the ankle does not appear to contribute much to the results, while the periodic motion 
of chest and arm is most likely driving the classifier. This is still the case for the higher intensity 
activity, which corresponds to a medium pace run, but more uncertainty can be observed, mostly 
with the high score of class 11, 12 and 14 corresponding to SIT and STD. 

Results for the Hellinger classifier are shown in Figure 37. Here, although the selection of the correct 
class labels is not immediate due to the high H values across classes, decision on the correct labels 
can still be achieved. The maximum and second maximum of both graphs in Figure 37 results in 



36 

 

labels WLK and RUN. This is clear from the H value associated with class 7 and 8, and 17 for the 
low intensity activity and class 8, 17 and 18 for the high intensity activity.  

 

 
Figure 34 – Example of acceleration trace recorded for a complex activity, recorded at the chest. 

 

 
Figure 35 – Example of acceleration for low intensity activity (left) and high intensity activity (right) 

 
Figure 36 – Classification results for Naïve Bayes classifier. 
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Figure 37 – Classification results for Hellinger distance classifier. 

 

5. CODE DEVELOPMENT 

The algorithm development and code generation was entirely done in Matlab®4, and was organize 
in three main use-case scenarios. These scenarios are descried as following 

 

A. Model Training: newly acquired activity data is pre-processed, segmented and features 
are computed. These features are then used to compute the statistical models used later 
for comparison and evaluation of new data. 

B. Model Evaluation: a newly acquired dataset is processed and its statistical model is then 
compared with stored models. A label is assigned at the end of this phase 

C. Model Comparison: two newly acquired dataset are processed, modeled and cross-
compared. This procedure will provide a measurable alignment between two dataset, 
computed as Hellinger divergence between respective models 

 

Figure 38 to Figure 40 show a schematic representation of the use-case scenarios described above. In 
the contest of the project, use-case A was used to generate a reference dataset from the PAMPA2 
data, once it is correctly preprocessed. Subsequently, use-case scenario B was used to evaluate a 
new model towards the known database of models, and use-case C was used to compare two model 
between each other.  

 

                                                 
4 https://www.mathworks.com/ 
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Figure 38 - Schematic representation of Model Training use-case scenario. 

 
Figure 39 - Schematic representation of Model Training use-case scenario. 

 

 
Figure 40 - – Schematic representation of Model Comparison use-case scenario. 

 

During the course of the project, several interfaces aimed at facilitating the interaction with the 
code were developed. To facilitate the segmentation of complex datasets, a GUI that allow the user 
to select the desired breaking points was designed. The segmentation GUI is modal, and allows 
the user to decide is the segmentation is necessary or not. An example of the modal GUI is shown 
in Figure 41, where the acceleration of the chest sensor is display for allowing the user to visually 
determine the compactness of the data. If segmentation is chosen, the user proceeds to a second 
GUI, where flexible breakpoints can be overlapped to the time trace, selecting the intervals that 
will define the data segments. This process is shown in Figure 42, where a green and red bar are 
visible. When a bar is first added, it appears red in color, meaning that it can still be moved (by 
dragging) to the desired location. In the moment the bar is released, the software fixes its location, 
recording it in the list on the right side of Figure 42. The segment then cannot be moved anymore, 
and the user can proceed to add a new segment if desired. If a mistake is made, the user can use 
the reset button and restart the process. In this way, the previous selected segments will be 
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discarded. An important option is the possibility to discard the first and last segment of the data. 
This is often useful for long dataset, where the data at the beginning and the end is often not 
desired. 

 

	
Figure 41 – Modal segmentation GUI. 

 

	
Figure 42 – Segmentation GUI details. 

 

Another important addition to the software is the implementation of the Data Explorer and 
Labeling GUI. This interface is needed in the supervised learning process, where each data 
segment is labeled accordingly, and the model associated with it is recorded and added to the 
model database. A view of the Data Explorer and Labeling GUI is shown in Figure 43, where several 
panels are highlighted. A description for each panel is provided in the following: 
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Panel 1. This panel contains the information about the dataset, and three dropdown menus 
for the selection of the trace of interest. By choosing the location (chest, arm, or ankle), the 
type of signal (acceleration, ECG, and rotational velocity) and the segment number, the use 
can explore the entire dataset. Only the first channel of each sensor is displayed in the plot. 
The LOAD button allows the user to load a new dataset, providing the option for this GUI to 
be used as a stand-alone product. 

Panel 2. When a Location/Type/Segment combination is selected, the software loads the 
model associated with the data, which is previously computed and stored in memory. The 
precise information about the Gaussian Mixture Model is displayed in Panel 2, while the 
model itself can be display in Panel 3. 

Panel 3. This panel displays the model associated with the data selected on Panel 1. 
Models that can be display are one- and two-dimensional models, while higher dimensional 
models cannot be display in a Cartesian plot. This is because model with more than two 
dimension require a four dimensional space. On the bottom of Panel 3 there are the axis 
zoom controls and a field to control the resolution of the model mesh. 

Panel 4. This panel is designed to allow the user to easily label the data selected on Panel 
1. When the user clicks on the text box, the software recognize that, a new label is desired 
and enables the element. Once a name for the label is chosen, clicking the ASSIGN Label 
button creates an object containing that model and associated with that label. This model is 
save in a dedicated directory on memory. It is also possible to reset a label for a given sensor 
dataset, by using the RESET Label button. This process removes the previously assigned 
label and allows the used to input a new label. 
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Figure 43 – Data explorer and labeling GUI with highlighted panels. 
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